Employing machine learning to enhance fracture recovery insights through gait analysis

Author:

Rezapour Mostafa1ORCID,Seymour Rachel B.2,Sims Stephen H.2,Karunakar Madhav A.2,Habet Nahir2,Gurcan Metin Nafi1

Affiliation:

1. Center for Artificial Intelligence Research Wake Forest University School of Medicine Winston‐Salem North Carolina USA

2. Department of Orthopaedic Surgery Atrium Health Musculoskeletal Institute and Wake Forest University School of Medicine Charlotte North Carolina USA

Abstract

AbstractThis study aimed to explore the potential of gait analysis coupled with supervised machine learning models as a predictive tool for assessing post‐injury complications such as infection, malunion, or hardware irritation among individuals with lower extremity fractures. We prospectively identified participants with lower extremity fractures at a tertiary academic center. These participants underwent gait analysis with a chest‐mounted inertial measurement unit device. Using customized software, the raw gait data were preprocessed, emphasizing 12 essential gait variables. The data were standardized, and several machine learning models, including XGBoost, logistic regression, support vector machine, LightGBM, and Random Forest, were trained, tested, and evaluated. Special attention was given to class imbalance, addressed using the synthetic minority oversampling technique (SMOTE). Additionally, we introduced a novel methodology to compute the post‐injury recovery rate for gait variables, which operates independently of the time difference between the gait analyses of different participants. XGBoost was identified as the optimal model both before and after the application of SMOTE. Before using SMOTE, the model achieved an average test area under the ROC curve (AUC) of 0.90, with a 95% confidence interval (CI) of [0.79, 1.00], and an average test accuracy of 86%, with a 95% CI of [75%, 97%]. Through feature importance analysis, a pivotal role was attributed to the duration between the occurrence of the injury and the initial gait analysis. Data patterns over time revealed early aggressive physiological compensations, followed by stabilization phases, underscoring the importance of prompt gait analysis. χ2 analysis indicated a statistically significant higher readmission rate among participants with underlying medical conditions (p = 0.04). Although the complication rate was also higher in this group, the association did not reach statistical significance (p = 0.06), suggesting a more pronounced impact of medical conditions on readmission rates rather than on complications. This study highlights the transformative potential of integrating advanced machine learning techniques like XGBoost with gait analysis for orthopedic care. The findings underscore a shift toward a data‐informed, proactive approach in orthopedics, enhancing patient outcomes through early detection and intervention. The χ2 analysis added crucial insights into the broader clinical implications, advocating for a comprehensive treatment strategy that accounts for the patient's overall health profile. The research paves the way for personalized, predictive medical care in orthopedics, emphasizing the importance of timely and tailored patient assessments.

Funder

AO North America

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3