Torsion constants and virtual mechanical tests are valid image‐based surrogate measures of ovine fracture healing

Author:

Ren Tianyi1ORCID,Inglis Brendan1,Darwiche Salim23ORCID,Dailey Hannah L.1ORCID

Affiliation:

1. Department of Mechanical Engineering and Mechanics Lehigh University Bethlehem Pennsylvania USA

2. Musculoskeltal Research Unit (MSRU), Vetsuisse Faculty University of Zurich Zurich Switzerland

3. Center for Applied Biotechnology and Molecular Medicine (CABMM) University of Zurich Zurich Switzerland

Abstract

AbstractIn large animal studies, the mechanical reintegration of the bone fragments is measured using postmortem physical testing, but these assessments can only be performed once, after sacrifice. Image‐based virtual mechanical testing is an attractive alternative because it could be used to monitor healing longitudinally. However, the procedures and software required to perform finite element analysis (FEA) on subject‐specific models for virtual mechanical testing can be time consuming and costly. Accordingly, the goal of this study was to determine whether a simpler image‐based geometric measure—the torsion constant, sometimes known as polar moment of inertia—can be reliably used as a surrogate measure of bone healing in large animals. To achieve this, postmortem biomechanical testing and microCT scans were analyzed for a total of 33 operated and 20 intact ovine tibiae. An image‐processing procedure to compute the attenuation‐weighted torsion constant from the microCT scans was developed in MATLAB and this code has been made freely available. Linear regression analysis was performed between the postmortem biomechanical data, the results of virtual mechanical testing using FEA, and the torsion constants measured from the scans. The results showed that virtual mechanical testing is the most reliable surrogate measure of postmortem torsional rigidity, having strong correlations and high absolute agreement. However, when FEA is not practical, the torsion constant is a viable alternative surrogate measure that is moderately correlated with postmortem torsional rigidity and can be readily calculated.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3