Transfiguring energy with an advantageous supercapacitor integrating MoS2/carbon quantum dots bi‐composites into a high‐performance polypyrrole matrix for unprecedented efficiency

Author:

Arora Rajat12,Dhanda Monika1,Yadav Meena1,Pahuja Priti1,Ahlawat Simran1,Jhanjhariya Neeru1,Nehra S. P.3,Lata Suman1ORCID

Affiliation:

1. Department of Chemistry Deenbandhu Chhotu Ram University of Science and Technology Murthal India

2. Department of Applied Sciences and Humanities Panipat Institute of Engineering and Technology Samalkha India

3. Centre of Excellence in Energy and Environmental Studies Deenbandhu Chhotu Ram University of Science and Technology Murthal India

Abstract

AbstractFor the first time, a simple one‐step in situ chemical polymerization technique is used to create a novel molybdenum disulphide/sulphonated carbon quantum dots (CQDs) and polypyrrole (MCP) nanocomposite that is extended for successful use in charge storage supercapacitor (SC) device. By inheriting qualities of excellent electrical conductivity of MoS2, CQDs and improved pseudocapacitive activity of polypyrrole (PPy), the MCP nanocomposite provides a suitable SC electrode material. 0.6 MCP nanocomposited three‐electrode system demonstrates 93.21% retention after 5000 cycles, and a maximum specific capacity of 2253 F/g at 2 mV/s with higher side of energy density as 106.06 Wh/kg along with a considerable power density as 180.28 W/kg. Using MCP as anode and an AC or activated charcoal electrode as cathode, a solid‐state asymmetric supercapacitor (ASC) was constructed. The fabricated device supplies a greater value of specific capacitance as 154.09 F/g at 100 mV/s and 175 F/g at 0.1 A/g, also evidenced superior energy density data as 126 Wh/kg along with an appreciable power density of 604.8 W/kg. After charging the ASC for 2 min, the light emitting diode shone for 5 min. The findings underpin that MCP is a potential electrode material that could be utilized as a better alternative in futuristic supercapacitor devices.

Funder

University Grants Commission

Deenbandhu Chhotu Ram University of Science and Technology

Council of Scientific and Industrial Research, India

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3