Model‐based systems engineering approach to the study of electromagnetic interference and compatibility in wireless powered microelectromechanical systems

Author:

Martinez‐Rojas Juan A.1ORCID,Fernandez‐Sanchez Jose L.2ORCID,Fernandez‐Munoz Miguel3ORCID,Sanchez‐Montero Rocio1ORCID,Lopez‐Espi Pablo L.1ORCID,Diez‐Jimenez Efren3ORCID

Affiliation:

1. Signal Theory and Communications Department Radiation and Sensing Group Universidad de Alcalá ‐ Escuela Politécnica Superior Alcalá de Henares Spain

2. Model‐Based Systems Engineering Methodologist Alcalá de Henares Spain

3. Signal Theory and Communications Department Mechanical Engineering Area Universidad de Alcalá ‐ Escuela Politécnica Superior Alcalá de Henares Spain

Abstract

AbstractElectromagnetic Interference and Compatibility (EMI–EMC) are a serious problem in Microelectromechanical Systems (MEMS), and specially in powered by wireless energy transfer MEMS. Most MEMS have dimensions in the order of 1 mm or less, thus, most of the suitable electromagnetic radiation sources have wavelengths larger than this, making isolation of electromagnetic effects very difficult. Model‐Based Systems Engineering (MBSE) can be an excellent tool to deal with EMI—EMC in MEMS during early design phases. In this work, we present a problem‐solving procedure and integration of EMI—EMC in MEMS from a Model‐Based Systems Engineering perspective. This approach is described in detail by a real example using a procedure based on nine steps fully integrated with the proposed systems engineering methodology. For example, the use of context diagrams (IBDs) and N SQUARE charts to describe EMC interactions is explained in detail. The system is formed by a Wireless Power Transfer (WPT) subsystem working near 2.45 or 4.5 GHz coupled to an electromagnetic micromotor. This micromotor contains copper microcoils which can receive electromagnetic radiation directly at the same time that the WPT subsystem. The greatest difficulty is, then, to power the WPT while isolating the micromotor, and optimizing the coupling interface. A summary of the most important EMC concepts and tools are reviewed from the systems engineer perspective and possible problems during the design and testing phases are discussed in detail using the example.

Publisher

Wiley

Subject

Computer Networks and Communications,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3