Sub‐second photon dose prediction via transformer neural networks

Author:

Pastor‐Serrano Oscar12,Dong Peng2,Huang Charles3,Xing Lei2,Perkó Zoltán1

Affiliation:

1. Department of Radiation Science & Technology Delft University of Technology Delft Netherlands

2. Department of Radiation Oncology Stanford University Stanford California USA

3. Department of Bioengineering Stanford University Stanford California USA

Abstract

AbstractBackgroundFast dose calculation is critical for online and real‐time adaptive therapy workflows. While modern physics‐based dose algorithms must compromise accuracy to achieve low computation times, deep learning models can potentially perform dose prediction tasks with both high fidelity and speed.PurposeWe present a deep learning algorithm that, exploiting synergies between transformer and convolutional layers, accurately predicts broad photon beam dose distributions in few milliseconds.MethodsThe proposed improved Dose Transformer Algorithm (iDoTA) maps arbitrary patient geometries and beam information (in the form of a 3D projected shape resulting from a simple ray tracing calculation) to their corresponding 3D dose distribution. Treating the 3D CT input and dose output volumes as a sequence of 2D slices along the direction of the photon beam, iDoTA solves the dose prediction task as sequence modeling. The proposed model combines a Transformer backbone routing long‐range information between all elements in the sequence, with a series of 3D convolutions extracting local features of the data. We train iDoTA on a dataset of 1700 beam dose distributions, using 11 clinical volumetric modulated arc therapy (VMAT) plans (from prostate, lung, and head and neck cancer patients with 194–354 beams per plan) to assess its accuracy and speed.ResultsiDoTA predicts individual photon beams in ≈50 ms with a high gamma pass rate of (2 mm, 2%). Furthermore, estimating full VMAT dose distributions in 6–12 s, iDoTA achieves state‐of‐the‐art performance with a (2 mm, 2%) pass rate and an average relative dose error of 0.75 ± 0.36%.ConclusionsOffering the millisecond speed prediction per beam angle needed in online and real‐time adaptive treatments, iDoTA represents a new state of the art in data‐driven photon dose calculation. The proposed model can massively speed‐up current photon workflows, reducing calculation times from few minutes to just a few seconds.

Funder

Varian Medical Systems

KWF Kankerbestrijding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

National Institutes of Health

Publisher

Wiley

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3