Closed‐Loop Control of Front Speed During Frontal Polymerization of Dicyclopentadiene—A Numerical Study

Author:

Schaer Grayson1ORCID,Bretl Timothy12ORCID

Affiliation:

1. Department of Aerospace Engineering University of Illinois Urbana IL 61801 USA

2. Coordinated Science Laboratory University of Illinois Urbana IL 61801 USA

Abstract

AbstractThe application of closed‐loop control to enforce a target front speed during frontal polymerization (FP) of dicyclopentadiene under various initial and boundary conditions is demonstrated. Uncontrolled propagation of FP reactions can result in frontal quenching due to heat loss, unstable front propagation, material overheating, spontaneous pattern formation, and heterogenous cured material properties. These disadvantageous properties of FP limit its use to cases with highly controlled initial and boundary conditions. It is shown with results in simulation that these problems can be mitigated in three ways through the application of closed‐loop control. First, it is shown that a target front speed can be enforced by locally controlling the temperature field during FP via an external heat source. Second, it is shown that this method prevents unstable front propagation and quenching despite adverse initial and boundary conditions. Third, it is shown that this method minimizes cure time and energy consumption compared to bulk heating.

Publisher

Wiley

Subject

Multidisciplinary,Modeling and Simulation,Numerical Analysis,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3