Ventilation and Pollutant Dispersion Analysis in the Uneven Building Arrays along with the Green Roof System

Author:

Luo Xiangyu12ORCID,Zhang Weichen13,Qin Zhenqi12,Huang Jin12,Wang Pengfei12,Zhao Wensheng12ORCID

Affiliation:

1. Ministry of Education Key Laboratory of Hydraulic Machinery Transients, Wuhan University Wuhan 430072 China

2. School of Power and Mechanical Engineering Wuhan University Wuhan Hubei 430072 China

3. School of Information and Safety Engineering Zhongnan University of Economics and Law Wuhan Hubei 430072 China

Abstract

AbstractIn this study, uneven urban streets are explored with different standard deviations (σH = 0–0.6) through numerical simulations. The ventilation and pollutant diffusion conditions are investigated under the combined action between the thermal buoyancy force and mechanical wind force. When the thermal buoyancy is uniformly distributed, the upstream vortex gradually occupies the most area of the flow unit with the increase in σH. Three configurations of green roof systems (roof, leeward, and windward cooling schemes) are assumed to represent different thermal buoyancy distributions in the street canyon. The average air exchange rate and pollutant retention time (τ) are proposed to evaluate the ventilation efficiency and pollutant dispersion condition. The “free airflow” phenomenon occurs and gradually expands with the increase in the standard deviation of each model. The flow structure and pollutant distribution inside the urban canopy are similar in the uniformly heated and leeward cooling scheme. The windward cooling scheme presents the least local retention time in most working conditions. The roof cooling scheme aggravates the pollutant accumulation conditions inside the street canyon. This study can provide some constructive guidelines in the urban planning process and benefit the design of urban greening with different building morphologies.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Multidisciplinary,Modeling and Simulation,Numerical Analysis,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3