An Enhanced Sampling Approach for Computing the Free Energy of Solid Surface and Solid–Liquid Interface

Author:

Nguyen Cao Thang1ORCID,Ho Duc Tam2ORCID,Kim Sung Youb1ORCID

Affiliation:

1. Department of Mechanical Engineering and Graduate School of Carbon Neutrality Ulsan National Institute of Science and Technology Ulsan 44919 South Korea

2. Department of Mechanical and Construction Engineering Northumbria University Newcastle Upon Tyne NE1 8ST UK

Abstract

AbstractFree energies of a solid surface and a solid–liquid interface play significant roles in thermodynamics. Due to the limited availability of experimental data, computational methods offer effective alternatives for calculating these properties. This study adopts advanced frameworks of the logarithmic mean force dynamics method to present an enhanced sampling approach for the calculation of the free energy at different temperatures. To achieve this, the free energy profile is constructed along with a pre‐established collective variable within the melting transition and cleavage processes. The values of the solid surface and solid–liquid interface free energies are then extrapolated from the excess free energy related to the formation and persistence of the solid surface or the solid–liquid interface. Furthermore, this methodology is employed to calculate the temperature dependence of the free energy measurements for the (100) and (110) surfaces and interfaces of Cu. It is shown that this methodology is robust and readily applicable in contemporary models of atomic interactions and various systems.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Multidisciplinary,Modeling and Simulation,Numerical Analysis,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3