Machine Learning for Semiconductor Process Simulation Described by Coupled Partial Differential Equations

Author:

Sato Rikuya1ORCID,Kutsukake Kentaro2ORCID,Harada Shunta13ORCID,Tagawa Miho13ORCID,Ujihara Toru13ORCID

Affiliation:

1. Department of Materials Process Engineering Nagoya University, Furo‐cho Chikusa‐ku Nagoya 464‐8603 Japan

2. Center for Advanced Intelligence Project RIKEN, Nihonbashi Chuo‐ku Tokyo 103‐0027 Japan

3. Institute of Materials and Systems for Sustainability (IMaSS) Nagoya University, Furo‐cho Chikusa‐ku Nagoya 464‐8601 Japan

Abstract

AbstractTechnology computer‐aided design (TCAD) simulation is an important tool for the development of semiconductor devices. Based on coupled partial differential equations (PDEs) for behaviors, TCAD can calculate objects such as impurities, point defects, and electronic carriers in semiconductors. However, over recent years semiconductor devices have become increasingly miniaturized and complicated, resulting in much longer calculation times for TCAD. Machine learning is one technology that may be used to overcome this simulation cost problem. In this study, a neural network architecture is proposed that considers the structure of the coupled PDEs. Features representing each concentration distribution of the calculation objects are extracted by convolution operations and their reaction is modeled by channel attention. The performance of the proposed architecture and of conventional neural network models is evaluated using a simulation dataset generated by 1D coupled PDEs that models the diffusion and reaction of vacancies and interstitial atoms. In addition, the advantage of the method is discussed through the analyses of error correlations of the two predictions and attention coefficients. The machine learning method developed in this study will be applicable to other physics described by coupled PDEs and is expected to speed up the computation of simulations in various fields.

Funder

New Energy and Industrial Technology Development Organization

Publisher

Wiley

Subject

Multidisciplinary,Modeling and Simulation,Numerical Analysis,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3