Bearing Fault Diagnosis based on Convolution Neural Network with Logistic Chaotic Map

Author:

Zhang Fangfang1ORCID,Chen Luobing1,Dai Yiyang1,Kou Lei2,Ji Peng1,Liu Yuanhong3

Affiliation:

1. School of Information and Automation Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China

2. Institute of Oceanographic Instrumentation Qilu University of Technology (Shandong Academy of Sciences) Qingdao 266100 P. R. China

3. School of Information and Electrical Engineering Northeast Petroleum University Daqing 163318 P. R. China

Abstract

AbstractBearing is the most basic component of motor, and prone to failure. Bearing fault diagnosis is paramount for improving the reliability and safety in motor‐drive systems. Therefore, convolutional neural network (CNN) is proposed with Logistic chaotic map and its corresponding fault diagnosis approach, which can effectively advance the accuracy of bearing fault diagnosis. Specifically, the Logistic chaotic map and Sigmoid function are combined into a non‐monotonic excitation function, which is employed to the full connection layer of the CNN. The proposed chaotic CNN can solve two issues that the conventional neural network inclines to get the local minimum value and the gradient of Sigmoid excitation function disappears. It is applied to fault data from the center of Western Reserve University and from the American Society for Mechanical Failure Prevention technology (in noiseless and noisy conditions). The results indicate the diagnosis accuracy of the algorithm outperforms other classical bearing diagnosis algorithms. Moreover, the chaotic CNN exhibits better anti‐noise performance.

Funder

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3