Heart Sounds Classification Based on High‐Order Spectrogram and Multi‐Convolutional Neural Network after a New Screening Strategy

Author:

Li Yasheng1,Yi Jizheng12ORCID,Zhong Bolin1,Yi Ziyu1,Chen Aibin12,Jin Ze34

Affiliation:

1. College of Computer and Information Engineering Central South University of Forestry and Technology Changsha 410000 China

2. Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center Changsha 410000 China

3. Suzuki lab Information and Artificial Intelligence Research International Hub Group Tokyo 226‐8503 Japan

4. Laboratory for Future Interdisciplinary Research of Science and Technology Institute of Innovative Research Tokyo Institute of Technology Tokyo 226‐8503 Japan

Abstract

AbstractThis paper proposes a pre‐processing method for heart sound screening and extracts the high‐order spectral feature of phonocardiogram. Moreover, a multi‐convolutional neural network (mCNN) is constructed to achieve the classification of normal, aortic stenosis, mitral regurgitation, mitral stenosis, and mitral valve prolapse. First, the heart sound recordings are down‐sampled, denoised by wavelet transform, and normalized. Second, a new heart sound screening algorithm is proposed. The waveform of the heart sound recording is segmented and saved as an image which is performed by the gray‐scale processing to calculate the amplitude of the heart sound. The extremely noisy heart sound segments are screened out based on the amplitude information, and the remaining heart sound segments are spliced as pure heart sound recordings. After 50% superposition segmentation of the heart sound recordings, high‐order spectral features are extracted and image data are stored. Finally, a 34‐layer mCNN is specifically designed to boost the performance of heart sound classification through multi‐layer dimensionality reduction. Experimental results show that the proposed method has superior performance compared with the existing one. For the two‐category dataset, the accuracy with and without PCG screening is 97.99% and 99.42%, respectively. For the five‐category dataset, the average accuracy is 99%.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Multidisciplinary,Modeling and Simulation,Numerical Analysis,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3