A Hybrid Neural Network‐Based Improved PSO Algorithm for Gas Turbine Emissions Prediction

Author:

Yousif Samar Taha12,Ismail Firas Basim34,Al‐Bazi Ammar5ORCID

Affiliation:

1. Universiti Tenaga Nasional College of Engineering Kajang Selangor 43000 Malaysia

2. University of Information Technology and Communications College of Engineering Baghdad Iraq

3. Universiti Tenaga Nasional Institute of Power Engineering Power Generation Unit Kajang Selangor 43000 Malaysia

4. Faculty of Engineering Sohar University PO Box 44 Sohar PCI 311 Oman

5. Aston University College of Business and Social Sciences Birmingham B4 7UP UK

Abstract

AbstractIn gas‐fired power plants, emissions may reduce turbine blade rotation, thus decreasing power output. This study proposes a hybrid model integrating the Feed forward Neural Network (FFNN) model and Particle Swarm Optimization (PSO) algorithm to predict gas emissions from natural gas power plants. The FFNN predicts gas turbine nitrogen oxides (NOx) and carbon monoxide (CO) emissions, while the PSO optimizes FFNN weights, improving prediction accuracy. The PSO adopts a unique random number selection strategy, incorporating the K‐Nearest Neighbor (KNN) algorithm to reduce prediction errors. Neighbor Component Analysis (NCA) selects parameters most correlated with CO and NOx emissions. The hybrid model is constructed, trained, and testedusing publicly available datasets, evaluating performance with statistical metrics like Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). Results show significant improvement in FFNN training with the PSO algorithm, boosting CO and NOx prediction accuracy by 99.18% and 82.11%, respectively. The model achieves the lowest MSE, MAE, and RMSE values for CO and NOx emissions. Overall, the hybrid model achieves high prediction accuracy, particularly with optimized PSO parameter selection using seed random generators.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal performance analysis of gas turbine power plant using soft computing techniques: a review;Engineering Applications of Computational Fluid Mechanics;2024-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3