Quantile Correlation‐Based Sufficient Variable Screening by Controlling False Discovery Rate

Author:

Qiu Han1,Chen Jiaqing1,Yuan Zihao1ORCID

Affiliation:

1. Department of Statistics, College of Science Wuhan University of Technology Wuhan Hubei 430070 China

Abstract

AbstractSufficient variable screening (SVS) with the false discovery rate (FDR) controlled rapidly reduces dimensionality with high probability in high dimensional modeling. By using quantiles, this paper proposes a new SVS procedure by controlling the FDR based on two‐stage Pearson's goodness testing with Chi‐square statistics for high dimensional data, abbreviated as QC‐SVS‐FDR. Without any specified distribution of the actual model, the QC‐SVS‐FDR method screens important predictors by a series of testing procedures combined with the adaptive composite of Pearson's chi‐square statistics. The quantile correlation‐based sufficient utility is sensitive to capture the subtle correlations under different quantile levels and is easy to implement with computational efficiency. Asymptotic results and sufficient screening properties of the proposed methods are obtained under mild conditions. Numerical studies including simulation studies and real data analysis demonstrate the advantages of the proposed method in practical settings.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3