CH3NH3SnI3${\mathrm{CH}}_{\mathrm{3}}{\mathrm{NH}}_{\mathrm{3}}{\mathrm{SnI}}_{\mathrm{3}}$: Superior Light Absorption and Optimized Device Architecture with 31.93% Efficiency

Author:

Hajjami M.1,Chabri I.1,Oubelkacem A.1ORCID,Benhouria Y.12,Kaiba A.3,Essaoudi I.1,Ainane A.14

Affiliation:

1. Laboratory of Materials Physics and Systems Modelling (LP2MS) Physics Department, Faculty of Science University Moulay Ismail Meknes 50000 Morocco

2. National school of Agriculture of Meknes ENAM Meknes 50001 Morocco

3. Department of Physics College of Science and Humanities in Al‐Kharj Prince Sattam bin Abdulaziz University Al‐Kharj 11942 Saudi Arabia

4. Max‐Planck‐Institut für Physik Complexer Systeme Nöthnitzer Str. 38 01187 Dresden Germany

Abstract

AbstractThis research investigates and optimizes the perovskite solar cells. Initially, optoelectronic parameters of perovskite absorber materials, including , , and , are estimated using Density Functional Theory (DFT) principles implemented in the Quantum Espresso software. The absorption of light energy is examined, detailing electron transitions between the highest p energy states of halogens (I, Br, and Cl) in the VB and the lowest 5p energy states of tin in the CB. shows superior optical characteristics, surpassing and , and demonstrating more effective absorption within the visible spectrum than . Subsequently, a numerical analysis is conducted for a P–I–N configuration Fluorine doped Tin Oxide (FTO)////Anode using SCAPS‐1D software. The optimization process focuses on absorber thickness, defect density, acceptor density, and the work function (WF) of the anode materials. Simulation findings recommend a defect density () of   for optimal performance, coupled with an absorber thickness of 1 µm. Examining the transformation from to through oxidation reveals that reducing the concentration of acceptors in the absorber layer (NA) significantly enhances device performance. Superior performance is achieved by a high WF anode material. This study not only contributes to advancing our understanding of lead‐free perovskite optoelectronics but also provides valuable insights for the development of highly efficient and stable solar cells.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3