Affiliation:
1. School of Automation Science and Engineering South China University of Technology Guangzhou 510640 P. R. China
2. Guangzhou Institute of Industrial Technology Guangzhou 511458 P. R. China
3. Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
Abstract
AbstractThe grading capacity of lithium‐ion battery is an important basis for evaluating battery quality. Aiming at the difficulty of determining the critical control factors and the threshold of the control parameters in the lithium‐ion battery manufacturing process, a capacity prediction and process parameter optimization model of lithium‐ion battery is proposed by combining the back propagation (BP) and particle swarm optimization (PSO) algorithms. First, the BP method is applied to establish the nonlinear mapping relationship between process data and grading capacity, which is regarded as the capacity consistency prediction model. Second, using the prediction model as fitness function and combining with PSO algorithm, the optimization model of process parameters is established. Finally, under the given initial process parameters from the lithium‐ion battery pilot line, it is carried out to obtain the best process parameter formula. The results show that the BP method has an accurate capacity consistency prediction effect. Combined with PSO algorithm, the optimized process parameters are obtained, which significantly improves the capacity consistency of lithium‐ion batteries. The results serve as an engineering application method to guide the selection and confirmation of process parameters at the battery design stage.
Subject
Multidisciplinary,Modeling and Simulation,Numerical Analysis,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献