3D Multiscale Lithium‐Ion Cell Modeling for LiFePO4 Freeze‐Casted Electrode Structures Using Synchrotron X‐Ray and FIB/SEM Tomography

Author:

Franke‐Lang Robert1ORCID,Hilger André2,Manke Ingo2,Zavareh Sara3,Bekheet Maged F.3,Gurlo Aleksander3,Kowal Julia1

Affiliation:

1. Institute of Energy and Automation Technology Faculty IV Electrical Engineering and Computer Science Technische Universität Berlin Einsteinufer 11 10587 Berlin Germany

2. Institute Applied Materials Helmholtz‐Zentrum Berlin für Materialien und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany

3. Institute of Materials Science and Technology Faculty III Process Sciences Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany

Abstract

AbstractThe performance of batteries and the associated operating areas depend, among other things, on the 3D microstructures of the electrode materials, and thus fundamental research is required in the field of electrode design. A multiscale microstructure‐resolved 3D model is developed that investigates two different LiFePO4 freeze‐casted electrode structures, that is, cellular and lamellar. The microstructure is simulated directly from the X‐ray computed tomography data and the nanostructure is combined with the pseudo‐2D simulation approach, where the morphological parameters and the distribution of the binder, carbon, and LiFePO4 are obtained from ex situ focused ion beam scanning electron microscopy measurements. The discharge performance shows that the lamellar structure exhibits a lower ohmic overvoltage and achieves a higher gravimetric capacity compared to the cellular structure, even though both electrode materials have the same porosity and amount of active material. The simulation reveals that the performance is not only directly influenced by the lithium‐ion transport through the porous structure but also by the current distribution through the active material. Based on these insights, lamellar electrode structures should be considered for next‐generation battery electrodes. The modeling approach can assist in electrode fabrication by identifying defects or suggesting better structural parameters.

Publisher

Wiley

Subject

Multidisciplinary,Modeling and Simulation,Numerical Analysis,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3