Thermodynamic Stability Prediction of Triple Transition‐Metal (Ti−Mo−V)3C2${\rm (Ti-Mo-V)}_3{\rm C}_2$ MXenes via Cluster Correlation‐Based Machine Learning

Author:

Atthapak Chayanon12,Ektarawong Annop123ORCID,Pakornchote Teerachote12,Alling Björn4,Bovornratanaraks Thiti12

Affiliation:

1. Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM) Department of Physics Faculty of Science Chulalongkorn University Bangkok 10330 Thailand

2. Thailand Center of Excellence in Physics Ministry of Higher Education, Science, Research and Innovation 328 Si Ayutthaya Road Bangkok 10400 Thailand

3. Chula Intelligent and Complex Systems Department of Physics Faculty of Science Chulalongkorn University Bangkok 10330 Thailand

4. Theoretical Physics Division Department of Physics Chemistry and Biology (IFM), Linköping University Linköping SE‐581 83 Sweden

Abstract

AbstractThe representation of atomic configurations through cluster correlations, along with the cluster expansion approach, has long been used to predict formation energies and determine the thermodynamic stability of alloys. In this work, a comparison is conducted between the traditional cluster expansion method based on density functional theory and other potential machine learning models, including decision tree‐based ensembles and multi‐layer perceptron regression, to explore the alloying behavior of different elements in multi‐component alloys. Specifically, these models are applied to investigate the thermodynamic stability of triple transition‐metal MXenes, a multi‐component alloy in the largest family of 2D materials that are gaining attention for several outstanding properties. The findings reveal the triple transition‐metal ground‐state configurations in this system and demonstrate how the configuration of transition metal atoms (Ti, Mo, and V atoms) influences the formation energy of this alloy. Moreover, the performance of machine learning algorithms in predicting formation energies and identifying ground‐state structures is thoroughly discussed from various aspects.

Funder

Chulalongkorn University

Asahi Glass Foundation

Linköpings Universitet

Stiftelsen för Strategisk Forskning

Vetenskapsrådet

Knut och Alice Wallenbergs Stiftelse

National Research Council of Thailand

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3