Improving the TADF in Corannulene‐Based Emitters via Tuning the Strength of Donor and Acceptor Groups

Author:

Jacob Jesni M.1ORCID,Jennifer G Abigail2,Varathan Elumalai2,Ravva Mahesh Kumar1ORCID

Affiliation:

1. Department of Chemistry SRM University‐AP Guntur Andhra Pradesh 522240 India

2. Department of Chemistry SRM Institute of Science and Technology Kattankulathur Chennai Tamil Nadu 603203 India

Abstract

AbstractIn this investigation, a systematic study on the design and development of corannulene‐based thermally activated delayed fluorescence (TADF) emitters using density functional theory methods is carried out. Benzene, benzopyrazine, difluoro‐benzopyrazine, benzene‐1,2‐dithiol, and tetrasulfone are introduced on corannulene bowl as electron‐withdrawing groups to alter the electron‐accepting property of corannulene. Three different donors, viz., carbazole, phenoxazine, and 5,10‐dihydrophenazine are substituted on the rim position of corannulene to alter the absorption properties. The relationship between chemical structure and TADF property is established by evaluating the dihedral angle between donor and acceptor units, spin–orbit coupling (SOC) values, the energy difference between singlet‐triplet excited states (ΔEST), and rates of reverse intersystem crossing (kRISC). The newly designed TADF emitters show absorption in the blue to near‐IR regions depending on the strength of the donor and acceptor moieties. Careful analysis of these properties delineates the relationship between SOC values and the nature of the excited states, which is crucial for achieving high kRISC.

Funder

Department of Science and Technology, Government of Kerala

Publisher

Wiley

Subject

Multidisciplinary,Modeling and Simulation,Numerical Analysis,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3