Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites
Author:
Affiliation:
1. Bureau of Economic Geology; Jackson School of Geosciences; University of Texas at Austin; Austin Texas USA
2. Geosciences Rennes; UMR CNRS 6118, Université de Rennes 1 Rennes France
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Reference61 articles.
1. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing. 1: Model formulation;Anderson;J. Geophys. Res.,2007a
2. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing. 2: Surface moisture climatology;Anderson;J. Geophys. Res.,2007b
3. A remote sensing surface energy balance algorithm for land (SEBAL). 1: Formulation;Bastiaanssen;J. Hydrol.,1998
4. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions;Bastiaanssen;J. Irrig. Drain. Eng.,2005
5. Bettadpur , S. 2007 Level-2 Gravity Field Product User Handbook
Cited by 428 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A machine learning downscaling framework based on a physically constrained sliding window technique for improving resolution of global water storage anomaly;Remote Sensing of Environment;2024-11
2. Improving evapotranspiration partitioning by integrating satellite vegetation parameters into a land surface model;Journal of Hydrology;2024-11
3. Expert-based prior uncertainty analysis of gridded water balance components: Application to the irrigated Hindon River Basin, India;Journal of Hydrology: Regional Studies;2024-10
4. Assimilating multivariate remote sensing data into a fully coupled subsurface-land surface hydrological model;Journal of Hydrology;2024-09
5. Integrating machine learning with thermal-driven analytical energy balance model improved terrestrial evapotranspiration estimation through enhanced surface conductance;Remote Sensing of Environment;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3