The evolution of frailty assessment using inertial measurement sensor‐based gait parameter measurements: A detailed analysis

Author:

Amjad Arslan1ORCID,Qaiser Shahzad2ORCID,Błaszczyszyn Monika3,Szczęsna Agnieszka1

Affiliation:

1. Department of Computer Graphics, Vision and Digital Systems, Faculty of Automatic Control, Electronics and Computer Science Silesian University of Technology Gliwice Poland

2. Institute for Artificial Intelligence and Cybersecurity University of Klagenfurt Klagenfurt Carinthia Austria

3. Department of Physical Education and Sport, Faculty of Physical Education and Physiotherapy Opole University of Technology Opole Poland

Abstract

AbstractFrailty is a significant issue in geriatric health, may cause adverse effects such as falls, delirium, weight loss, or physical decline. Over time, various methods have been developed for measuring frailty, including clinical judgment, the frailty index, the clinical frailty scale, and the comprehensive geriatric assessment. These traditional frailty assessment approaches rely on healthcare professionals, which can lead to inaccuracy and require frequent clinic visits, making it burdensome for elderly patients. This review paper explores the latest trends in frailty assessment by measuring gait parameters using wearable sensors, specifically the inertial measurement unit (IMU). The aim of this study is to provide a comprehensive overview of objective methods for evaluating and quantifying frailty. We focus on the application of machine learning (ML) and deep learning (DL) techniques to IMU gait data, highlighting key aspects of recent publications such as algorithms, sensor types, sample sizes, and performance evaluations. By examining the strengths and challenges of each technique, this review aims to guide future studies on utilizing cost‐effective and portable devices integrated with clinical data. This integration can help to propose optimized IMU gait parameters or ML models to detect early‐stage frailty. This advances the emerging trend of intelligent, individualized, and efficient healthcare systems for older adults.This article is categorized under: Application Areas > Health Care Technologies > Machine Learning Technologies > Artificial Intelligence

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3