Plastic water supply connectors: Leaching, hydrocarbon contamination, and decontamination

Author:

Isaacson Kristofer P.1,Le Halley2,Verma Akshat3,Youngblood Jeffrey P.3,Shah Amisha D.4,Whelton Andrew J.5ORCID

Affiliation:

1. Division of Environmental and Ecological Engineering Purdue University West Lafayette Indiana USA

2. Department of Science and Mathematics Bennington College Bennington Vermont USA

3. School of Materials Engineering Purdue University West Lafayette Indiana USA

4. Division of Environmental and Ecological Engineering, Lyles School of Civil Engineering Purdue University West Lafayette Indiana USA

5. Division of Environmental and Ecological Engineering, Lyles School of Civil Engineering, Center for Plumbing Safety Purdue University West Lafayette Indiana USA

Abstract

AbstractDisasters can prompt hydrocarbon contaminants to reach building water systems, and ultimately customer fixtures. Here, seven water supply connectors (e.g., ice‐maker lines, faucet connectors, washing machine hoses) were exposed to contaminated water, and were subsequently decontaminated by water flushing. After a 24 h contamination period, water samples were collected after three consecutive 72 h exposure periods. Samples were characterized for volatile organic compound, semi‐volatile organic compound, and total organic carbon concentrations. New, uncontaminated, PVC tubing leached phenol at concentrations that exceeded the health advisory. All materials sorbed more than 90% of hydrocarbon contaminants during the initial exposure period. All materials then released the contaminants into the water during decontamination, at times above health‐based limits. The majority of sorbed mass remained in the plastics at the end of the decontamination effort, indicating the products posed continued leaching risks. Public health guidance considerations and research needs were identified.

Funder

U.S. Environmental Protection Agency

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3