Antitumor effect of luteolin proven by patient‐derived organoids of gastric cancer

Author:

Hao Xinyu12ORCID,Zu Ming12ORCID,Ning Jing12ORCID,Zhou Xin3ORCID,Gong Yueqing12ORCID,Han Xiurui12ORCID,Meng Qiao12ORCID,Li Dong4ORCID,Ding Shigang12ORCID

Affiliation:

1. Department of Gastroenterology Peking University Third Hospital Beijing China

2. Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371) Beijing China

3. Department of General Surgery Peking University Third Hospital Beijing China

4. Department of Traditional Chinese Medicine Peking University Third Hospital Beijing China

Abstract

AbstractLuteolin (Lut) has been shown to inhibit gastric cancer (GC); however, its efficacy compared to other clinical drugs has not been examined in human samples. This study aimed to elucidate the antitumor activity of Lut in GC patient‐derived organoids (PDOs). PDOs were established from GC cancer tissues, and the characterization of tissues and PDOs was performed using whole‐exome sequencing. Drug sensitivity tests were performed by treating PDOs with Lut, norcantharidin (NCTD), and carboplatin (CP). RNA sequencing of PDOs was performed to elucidate the antitumor mechanism of Lut, which was further verified in three GC cell lines. Eleven PDOs were successfully constructed, and were highly consistent with the pathophysiology and genetic changes in the corresponding tumors. The IC50s of Lut, NCTD, and CP of PDOs were 27.19, 23.9, and 37.87 μM, respectively. Lut treatment upregulated FOXO3, DUSP1, and CDKN1A expression and downregulated IL1R1 and FGFR4 expression in GC cell lines, which was consistent with the results of PDOs. We demonstrate that Lut exerted stronger antitumor effects than CP, but a similar effect to that of NCTD, which was obtained in an in vitro PDO system. Additionally, Lut exerted varying degrees of antitumor effects against the PDOs, thereby indicating that PDO may be a useful preclinical drug screening tool for personalized treatment.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3