Sublethal and transgenerational effects of pyridaben exposure on the fitness and gene expression of Panonychus citri

Author:

Pan Deng12,Xia Menghao12,Luo Qiujuan12,Li Chuanzhen12,Yuan Guorui12ORCID,Wang Jinjun12,Dou Wei12ORCID

Affiliation:

1. Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection Southwest University Chongqing China

2. Academy of Agricultural Sciences Southwest University Chongqing China

Abstract

AbstractBACKGROUNDPanonychus citri is a globally dominant citrus plant pest mite. Pesticide‐induced population resurgence is a concern for mite control. Exposure to sublethal concentrations of pesticides has stimulated reproduction and outbreak risks in many pests. Pyridaben, a mitochondrial electron transport inhibitor, has been frequently used worldwide in mite control. In the study, sublethal and transgenerational effects of pyridaben exposure on Pyr_Rs (resistant) and Pyr_Control (susceptible) strains were systematically investigated in both exposed parental generation (F0) and unexposed offspring generations (F1 and F2) by evaluating life‐table and physiological parameters.RESULTSAfter exposure to pyridaben, the fecundity of both strains was significantly reduced in F0 generation while significantly induced in F1 generation. Interestingly, these effects also stimulated the fecundity of the F2 generation in Pyr_Control strain while no significant effects occurred for Pyr_Rs strain. The intrinsic rate of increase (r) and finite rate of increase (λ) were significantly decreased only in F1 generation of Pyr_Control strain after exposure treatment. Meanwhile, the population projection indicated a smaller population size in F1 generation of Pyr_Control strain while a population increase for Pyr_Rs strain after sublethal treatment. Subsequent detoxification enzyme assays indicated that only P450 activities in F0 generation were significantly activated by LC30 exposure to pyridaben in both strains. Significant downregulation of reproduction‐related (Pc_Vg) genes was observed in the F0 generations of both strains. Significant upregulation of P450 (CYP4CL2) and Pc_Vg of the F1 generation in both strains suggested the presence of delayed hormesis effects on the reproduction and developed tolerance to pyridaben, although the effects did not last over a longer period (F2 generation).CONCLUSIONThese results provide evidence for transgenerational hormesis effects of low concentrations of pyridaben exposure that may lead to population increase and resurgence risks of resistant‐mites in natural settings by stimulating reproduction. © 2023 Society of Chemical Industry.

Funder

China Agricultural Research System

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3