PAW: Prediction of wildlife animals using a robot under adverse weather conditions

Author:

Kaur Parminder1,Kansal Sachin1,Singh V. P.1

Affiliation:

1. Computer Science and Engineering Department Thapar Institute of Engineering and Technology Patiala Punjab India

Abstract

AbstractImage dehazing and object detection are two different research areas that play a vital role in machine learning. When merged together and implemented in real‐time, it is a boon in the field of artificial intelligence, specifically robotics. Object detection and tracking are two of the major implementations in almost the entire robot's training and learning. The learning of the robot depends on the images; these images can be camera‐captured images or a pretrained data set. Real‐time outdoor images clicked in bad weather conditions, such as mist, haze, smog, and fog, often suffer from poor visibility, and the consequences are incorrect results and hence an unexpected robot's behavior. To overcome these consequences, we have presented a novel approach to object detection and identification during adverse weather conditions. This method is proposed to be implemented in a real‐time environment to monitor animal behavior near railway tracks during fog, haze, and smog. This is not limited to specific application areas but can be used to identify endangered species and take active steps to save them from mishap. The deployment is done in a real‐time indoor environment using Tortoisebot mobile robot with a robot operating system framework.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3