A label machine for mechanical systems: Discovering operating states with unsupervised learning from load time series

Author:

Riebe Jakob12ORCID,Hantschke Peter1,Griesing Andreas2,Kästner Markus1

Affiliation:

1. Institute of Solid Mechanics TUD Dresden University of Technology Dresden Germany

2. Estino GmbH Dresden Germany

Abstract

AbstractLabeling time series data according to operating states is often a time‐consuming task that requires expert domain knowledge of the underlying mechanical system. In this paper, we propose a data‐driven algorithm that identifies and detects operating states from time series data by grouping time ranges of similar signal behavior together using an unsupervised machine learning approach. The scattering transform and principal component analysis are utilized to extract signal characteristics from time series data which are subsequently clustered by a Gaussian mixture model to generate operating states. To evaluate our approach, we compare the automatically generated operating states with a manual definition of operating states created through expert knowledge. Based on a publicly available eBike dataset, the results demonstrate that the data‐driven definition of operating states can yield similar results to a rule set based on expert knowledge.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Reference20 articles.

1. Zählverfahren und Lastannahme in der Betriebsfestigkeit

2. Speckert M. Ruf N. Dressler K. Müller R. Weber C. &Weihe S.(2009).Ein neuer Ansatz zur Ermittlung von Erprobungslasten für sicherheitsrelevante Bauteile. Berichte des Fraunhofer ITWM Nr. 177.Fraunhofer ITWM.

3. Dressler K. Speckert M. Müller R. &Weber C.(2009).Customer loads correlation in truck engineering. Berichte des Fraunhofer ITWM Nr. 151.Fraunhofer ITWM.

4. Streit A. Dreßler K. Speckert M. Lichter J. Zenner T. &Bach P.(2009).Anwendung statistischer Methoden zur Erstellung von Nutzungsprofilen für die Auslegung von Mobilbaggern. Berichte des Fraunhofer ITWM Nr. 163.Fraunhofer ITWM.

5. Eckstein C.(2017).Ermittlung repräsentativer Lastkollektive zur Betriebsfestigkeit von Ackerschleppern[PhD thesis Technische Universität Kaiserslautern].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3