Surrogate‐based optimization for active drag reduction of turbulent boundary layer flows

Author:

Hübenthal Fabian1ORCID,Albers Marian1ORCID,Meinke Matthias1,Schröder Wolfgang1

Affiliation:

1. Chair of Fluid Mechanics and Institute of Aerodynamics RWTH Aachen Aachen Germany

Abstract

AbstractTwo surrogate‐based optimization strategies using support vector regression (SVR) and Gaussian process regression (GPR) as surrogates are investigated to guide the design of actuation parameters for active drag reduction techniques in turbulent boundary layer flows encountered at civil airplanes in cruise flight and high‐speed trains. As an approximation, the turbulent flow over a flat plate subjected to spanwise traveling transversal sinusoidal surface waves is simulated by wall‐resolved large‐eddy simulations (LESs). These simulation data are used to model the dependence of the objective drag reduction on the actuation parameters, that is, the optimization variables. In this work, the previous purely exploitative approach of SVR‐based ridgeline optimization is extended to GPR‐based Bayesian optimization to further automate the simulation‐driven tuning of the actuation parameters.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3