Design optimization of three‐dimensional geometry of a micro horizontal axis wind turbine blade using the response surface method

Author:

Bekkai Riyadh1ORCID,Laouar Roudouane1,Mdouki Ramzi1

Affiliation:

1. Laboratoire d'environnement, Faculté des Sciences et de Technologie Echahid Cheikh Larbi Tebessi University Tébessa Algeria

Abstract

AbstractThis study presents an aerodynamic design optimization of a micro micro‐horizontal‐axis wind turbine (HAWT). To obtain an optimal design, it is essential to understand the design parameters and select the responsible factors that affect the blade efficiency. The aim of this work is to redesign a 3D micro‐HAWT to improve aerodynamic performance, through improving the distribution of chord length and twist angle along the blade. Performance analysis and flow visualization of the initial design and the optimal design were carried out using CFD analyzer. In the blade optimization design, eight significant input parameters were selected, five to characterize the chord length distribution and three to represent the twist angle along the blade. To maximize the efficiency, design points that are created by Design of Experiment (DoE) are evaluated through (Multi‐Objective‐Genetic Algorithm) MOGA method. The results showed a reduction on the separation effect area on the optimal blade surface compared to the initial one. The use of response surface optimization (RSO), when combined with CFD simulation, has proven beneficial in selecting the optimal HAWT design. Finally, the open source software (Qblade) was used to investigate and to compare the performance of the initial and optimum design. An efficiency enhancement of approximately 3.6% is achieved at tip speed ration TSR = 3.4.

Publisher

Wiley

Reference10 articles.

1. An insight into the rotational augmentation on HAWTs by means of CFD simulations‐Part 1: State of the art and numerical results;Maura S.;International Journal of Applied Engineering Research,2017

2. An insight into the rotational augmentation on HAWTs by means of CFD simulations – Part 2: POST‐Processing and force analysis;Maura S.;International Journal of Applied Engineering Research,2017

3. Wind Turbine Blade Optimal Design Considering Multi-Parameters and Response Surface Method

4. ANSYS Inc. (2011).ANSYS design xplorer user's guide ANSYS Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3