A detailed surface reaction mechanism to investigate oxidation of methane over nickel catalyst

Author:

Rakhi 1,Günther Vivien2,Mauss Fabian1

Affiliation:

1. BTU Cottbus - Senftenberg Siemens-Halske-Ring 14 03046 Cottbus Germany

2. LOGE AB Querstrasse 48 03044 Cottbus Germany

Abstract

AbstractWe have developed a kinetically consistent detailed surface reaction mechanism for modeling the oxidation of methane over a nickel‐based catalyst. A one‐dimensional model, LOGEcat based on the single‐channel 1D catalyst model, is used to perform the simulations. The original multi‐step reaction mechanism is thermodynamically consistent and consists of 52 reactions. By thermodynamic consistency, we mean that the equilibrium is achieved with the support of the Arrhenius parameters and does not depend on the thermochemistry of the species involved in the considered reactions. The detailed mechanism developed in this investigation contains 26 reversible reactions. These reactions are obtained with the use of the thermochemistry of the species. The study focuses on ensuring kinetic consistency and this is done with the help of thermodynamic analysis by bringing the thermochemistry of the species in play in order to develop a surface reaction mechanism. The new mechanism can be used to understand the other processes, for example, steam‐ and dry‐reforming of methane over nickel, however, the main focus of the paper is to check the performance of the detailed mechanism for catalytic partial oxidation of methane. The applicability of the mechanism is checked for various reactor conditions in terms of parameters such as temperature and pressure by comparing the results with the available reference data. The detailed mechanism developed in this study is able to accurately express oxidation of methane over the nickel catalyst for the considered reactor conditions.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3