Artificial recurrent model for parameter identification of dynamic systems

Author:

Bielitz Timo1ORCID,Bestle Dieter1ORCID

Affiliation:

1. Brandenburg University of Technology Cottbus‐Senftenberg Cottbus Germany

Abstract

AbstractThe process of determining parameter values causing a specific system response usually relies on the existence of a mathematical model of the system, generally derivable from physical principles. This model may then be used to tune parameter values until the corresponding model output coincides with a desired one. To eliminate the necessity of setting up a mathematical model by causal deduction starting from physical principles, machine learning strategies may be applied. Here, the Long Short‐Term Memory (LSTM) network is the basis for a recurrent surrogate which predicts the solution starting from a specific initial condition being influenced by parameter values under investigation. With the trained model it is then possible to perform parameter identification by adjusting values of the model parameters either by use of classical optimization or machine learning (ML)‐based parameter training until the desired model response is achieved.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3