Size effects in numerical homogenization of polycrystalline silicon

Author:

Weber Martin1ORCID,Aßmus Marcus1,Glüge Rainer1,von Zabiensky Max2,Altenbach Holm1

Affiliation:

1. Faculty of Mechanical Engineering Institute of Mechanics Otto‐von‐Guericke‐Universität Magdeburg Magdeburg Germany

2. Faculty of Mechanical Engineering Institute of Continuum Mechanics Gottfried Wilhelm Leibniz Universität Hannover Garbsen Germany

Abstract

AbstractA current topic in the photovoltaic industry is the analysis and evaluation of possible structural and material properties. This requires the effective material characteristics of polycrystalline silicon, which is an important component for the functional performance of the photovoltaic modules in use. Since this assessment is associated with high costs, it is to be carried out already in the product development process. Due to very thin silicon layers, the effect of the layer thickness on the effective material characteristics has to be investigated (see ). In this work, a procedure to determine these characteristic values is listed to investigate the size effect on different film thicknesses of this material (see ). With the knowledge of the properties of the silicon single crystal with its cubic symmetry on the micro level, a homogenization of the properties to the macro level can be done. The polycrystal structure with a cubic sample geometry forms the macro level. This structure is now cut into thinning layers for investigation. The open‐source software Neper is used to create the crystal structure and the inter‐connectivity for this purpose. With the help of Matlab, this information is passed on to the finite element program Abaqus, where the results are evaluated after an elastic calculation using Python. The focus is on the expected change in material properties as a function of the layer thickness.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Reference17 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3