Scaled boundary isogeometric analysis with C1 coupling for Kirchhoff‐Love theory

Author:

Arf Jeremias1,Reichle Mathias2,Klinkel Sven2,Simeon Bernd1

Affiliation:

1. TU Kaiserslautern Paul-Ehrlich-Straße 31 67663 Kaiserslautern

2. RWTH Aachen Mies-van-der-Rohe-Str. 1 52074 Aachen Germany

Abstract

AbstractScaled boundary isogeometric analysis (SB‐IGA) describes the computational domain by proper boundary NURBS together with a well‐defined scaling center; see [5]. More precisely, we consider star convex domains whose domain boundaries correspond to a sequence of NURBS curves and the interior is determined by a scaling of the boundary segments with respect to a chosen scaling center. However, providing a decomposition into star shaped blocks one can utilize SB‐IGA also for more general shapes. Even though several geometries can be described by a single patch, in applications frequently there appear multipatch structures. Whereas a C0 continuous patch coupling can be achieved relatively easily, the situation becomes more complicated if higher regularity is required. Consequently, a suitable coupling method is inevitably needed for analyses that require global C1 continuity.In this contribution we apply the concept of analysis‐suitable G1 parametrizations [2] to the framework of SB‐IGA for the C1 coupling of planar domains with a special consideration of the scaling center. We obtain globally C1 regular basis functions and this enables us to handle problems such as the Kirchhoff‐Love plate and shell, where smooth coupling is an issue. Furthermore, the boundary representation within SB‐IGA makes the method suitable for the concept of trimming. In particular, we see the possibility to extend the coupling procedure to study trimmed plates and shells.The approach was implemented using the GeoPDEs package [1] and its performance was tested on several numerical examples. Finally, we discuss the advantages and disadvantages of the proposed method and outline future perspectives.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3