FEM‐Modeling of thermal and viscous effects in piezoelectric MEMS loudspeakers

Author:

Hassanpour Guilvaiee Hamideh1,Toth Florian1,Kaltenbacher Manfred2

Affiliation:

1. TU Wien Vienna Austria

2. TU Graz Graz Austria

Abstract

AbstractLoudspeakers based on piezoelectric micro‐electro‐mechanical system (PMEMS) are attracting an increasing interest due to their small size, low electronic power consumption, and easy assembly. These aspects are particularly advantageous in applications like earphones, mobile phones, and in‐ear hearing aid devices. However, creating sufficiently high sound pressure levels challenges many existing MEMS loudspeakers. Furthermore, their small dimensions require the consideration of additional physical phenomena like thermoviscous losses, which are often negligible in large loudspeakers. We model and characterize a 3D piezoelectric MEMS loudspeaker in this work using our open‐source finite element method (FEM) program openCFS. We use the linearized conservation of mass, momentum, and energy (thermoviscous acoustic PDEs) for a compressible Newtonian fluid (air) and describe the linear elastic solid using the linearized balance of momentum. The coupling between flow and solid fields is then applied using a non‐conforming FEM formulation. The standard acoustic partial differential equation (PDE) is used in the far‐field, where the thermal and viscous effects are negligible. We study the viscous effects on the displacement and the sound pressure levels (SPLs) of the loudspeaker by parameter studies. These results indicate that at a distance of 13 mm, an SPL of 55 dB at 5 kHz is achieved by a single PMEMS loudspeaker with a footprint of 1.7×1.7 mm2 under a low driving voltage of only 1 V, which is promising considering its dimensions.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3