Algebraic properties of projected problems in LSQR

Author:

Havelková Eva1,Hnětynková Iveta1

Affiliation:

1. Department of Numerical Mathematics, Faculty of Mathematics and Physics Charles University Prague Czech Republic

Abstract

AbstractLSQR represents a standard Krylov projection method for the solution of systems of linear algebraic equations, linear approximation problems or regularization of discrete inverse problem. Its convergence properties (residual norms, error norms, influence of finite precision arithmetic etc.) have been widely studied. It has been observed that the components of the solution of the projected bidiagonal problem typically increase and their sign alternates. This behavior is the core of approximation properties of LSQR and is observed also for hybrid LSQR with inner Tikhonov regularization. Here we provide rigorous analysis of sign changes and monotonicity of individual components of projected solutions and projected residuals in LSQR. The results hold also for Hybrid LSQR with a fixed inner regularization parameter. The derivations do not rely on maintaining orthogonality in Krylov bases determined by the bidiagonalization process. Numerical illustration is included.

Funder

Univerzita Karlova v Praze

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3