Stochastic deconvolution of wall statistics in Reynolds‐averaged Navier–Stokes simulations based on one‐dimensional turbulence

Author:

Glawe Christoph1ORCID,Klein Marten23,Schmidt Heiko23

Affiliation:

1. wpd Onshore GmbH & Co. KG Bietigheim‐Bissingen Germany

2. Lehrstuhl Numerische Strömungs‐und Gasdynamik Brandenburgische Technische Universität Cottbus‐Senftenberg Cottbus Germany

3. Scientific Computing Lab, Energie‐Innovationszentrum Cottbus Germany

Abstract

AbstractReynolds‐averaged Navier–Stokes simulation (RaNS) is state‐of‐the‐art for numerical analysis of complex flows at high Reynolds number. Standalone RaNS may yield a reasonable estimate of the wall‐shear stress and turbulent drag if a proper wall‐function is prescribed, but detailed turbulence statistics cannot be obtained, especially at the wall. This lack in modeling is addressed here by a stochastic deconvolution strategy based on a stochastic one‐dimensional turbulence (ODT) model. Here, a one‐way coupling strategy is proposed in which a forcing term is computed from the balanced RaNS solution that is in turn utilized in the ODT model. The temporally developing ODT solution exhibits turbulent perturbations but relaxes toward the local RaNS solution due to resolved molecular‐diffusive processes. It is demonstrated that the approach is able to recover the distribution of positive wall‐shear stress fluctuations in turbulent channel flow. When formulated as post‐processing tool, it is suggested that RaNS can be enhanced by ODT providing economical means for local high‐fidelity numerical modeling based on a low‐fidelity flow solution.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3