Polymorphic Uncertain Structural Analysis: Challenges in Data‐Driven Inelasticity

Author:

Zschocke Selina1,Graf Wolfgang1,Kaliske Michael1

Affiliation:

1. Institute for Structural Analysis Technische Universität Dresden 01062 Dresden Germany

Abstract

AbstractThis contribution addresses polymorphic uncertainty quantification within structural analysis of reinforced concrete structures composed of heterogeneous concrete and reinforcement (e.g. steel bars or carbon fibres). The macroscopic material behaviour of concrete is strongly dependent on the mesoscopic heterogeneities, which are considered by multiscale modelling. The heterogeneous mesoscopic material behaviour is characterized by representative volume elements (RVE) and the transition of scales is carried out by utilizing numerical homogenization methods.The concept of data‐driven computational mechanics enables material model free finite element analyses directly based on material data sets, overcoming the necessity of assumptions in material modelling. This approach mainly consists in assigning a stress‐strain state, which leads to a minimum of an objective function and fulfils equilibrium as well as compatibility constraints of every integration point. Inelastic material behaviour is taken into account through the definition of local data sets containing only data set states which are consistent with respect to the past local history . The realistic modelling of structures requires the consideration of data uncertainty. Generalized polymorphic uncertainty models are utilized in order to take variability, imprecision, inaccuracy and incompleteness of material data into account by combining aleatoric and epistemic uncertainty models.In this contribution, a computationally efficient approach for the consideration of data sets containing uncertain stress‐strain states within data‐driven analysis based on information reduction measurements is presented. Due to generalization, the approach is applicable to various aleatoric, epistemic and polymorphic uncertainty models. The identification of admissible local data sets for taking inelastic material behaviour into account within data‐driven analysis is realized by an energy based history parametrization which is extended to uncertain data. An approach for the efficient selection of these local data sets is presented and challenges in data‐driven inelasticity, particularly in the use case of polymorphic uncertain analyses of concrete structures, are pointed out.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3