Closed‐loop adaptive model predictive control of a bluff body wake

Author:

Gaina Ghiroaga Calin1,Morton Chris2,Martinuzzi Robert1

Affiliation:

1. Department of Mechanical and Manufacturing Engineering University of Calgary

2. Department of Mechanical Engineering McMaster University

Abstract

AbstractA machine learning methodology is outlined to achieve robust closed‐loop feedback control of a bluff body turbulent wake. A Long Short‐Term Memory (LSTM) Neural Network is implemented with Model Predictive Control (MPC) to achieve closed‐loop flow control. The LSTM model is trained using actuation and pressure sensor data to forecast future pressure states. The candidate system is a square cross‐sectional cylinder with two modulated moving surface actuators embedded in the windward face leading corners. The controller performance is tested experimentally for three objective functions: recovery of mean‐base pressure set‐point after perturbation; and minimization of drag or wake fluctuation intensity. An adaptive learning strategy is implemented to adjust the model to new Reynolds number (Re) conditions without user intervention, thereby extending the controller performance and achieving more robust control. The identified minimum drag and wake fluctuation cases are analysed using velocity field data measured with particle image velocimetry.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3