Large‐eddy simulation of a channel flow over an irregular porous matrix

Author:

Sadowski Wojciech1ORCID,Sayyari Mohammed1ORCID,Mare Francesca di1

Affiliation:

1. Thermal Turbomachines and Aeroengines Ruhr‐Universität Bochum Bochum Germany

Abstract

AbstractFor turbulent flows in porous media, it is often assumed that the irregularity of the matrix would not affect the macroscopic, double‐averaged (in time and space), parameters of turbulence. Hence, to improve currently used modelling techniques, the ongoing efforts of the community are focused on performing high‐fidelity, scale‐resolving simulations of flows in regular, periodically repeating porous structures. This approach allows for minimizing still large computational cost, however, it assumes that results obtained from those geometries are generalizable to more disordered configurations. We investigate this assumption numerically using large‐eddy simulation and analyse the influence of the irregularity of the porous structure on turbulent characteristics in a fully turbulent flow in a channel half‐filled with porous medium. The flow statistics are examined and compared between four simulations, a reference channel with regular three‐dimensional porous matrix consisting of an array of cubes and three similar geometries created from randomly perturbing the positions of the cubes, with increasing mean value of cube displacement. We study double‐averaged flow properties, the distributions of double‐averaged Reynolds stress tensor, including the anisotropy of macroscopic turbulence and the drag force induced by the flow in the porous region of the channel. The results confirm the idea that the averaged characteristics, including the anisotropy of the stress tensor and the drag force, are not greatly influenced by the moderate perturbation to the geometry of the porous matrix. Additionally, the macroscopic turbulence seems to exhibit a high degree of anisotropy in the porous region and the adjacent boundary layer, suggesting that second‐order closure could be an adequate modelling choice for such flows.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3