On dynamic crack propagation in a lattice Boltzmann method for elastodynamics in 2D

Author:

Müller Henning1,Schlüter Alexander2,Faust Erik2,Müller Ralf1

Affiliation:

1. Institute for Mechanics TU Darmstadt Darmstadt Germany

2. Applied Mechanics RPTU Kaiserslautern‐Landau Kaiserslautern Germany

Abstract

AbstractIn recent years, the development of lattice Boltzmann methods (LBMs) for solids has gained attention. Fracture mechanics as a viable application for these methods has been presented before, albeit for mode III cracks in the context of an LBM for antiplane shear deformation. The performance of the LBM itself is promising, while the usage of a regular lattice simplifies the modelling of fractures significantly. Recent advancements in LBMs for solids, especially the description of Dirichlet‐ and Neumann‐type boundary conditions, now make it possible to extend the LBM simulation of crack propagation to the plane strain case with modes I and II crack opening, including growth with non‐uniform speed in arbitrary directions. For this, the configurational force acting on a crack tip is utilised. The definition of the moments of the LBM, which are based on the balance laws of continuum mechanics, render the evaluation of macroscopic fields in the configuration straightforward. In this work, the general in‐plane case of dynamic crack propagation is shown and necessary considerations for the implementation are discussed. Lastly, numerical examples showcase the capabilities of the proposed method to model dynamic fractures and establish a proof‐of‐concept.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Reference19 articles.

1. Mechanics in Material Space

2. A comparative review of peridynamics and phase-field models for engineering fracture mechanics

3. A concise python implementation of the lattice Boltzmann method on HPC for geo-fluid flow

4. Escande M. Kolluru P. K. Cléon L. M. &Sagaut P.(2020 September).Lattice Boltzmann Method for wave propagation in elastic solids with a regular lattice: Theoretical analysis and validation.https://doi.org/1048550/ARXIV.2009.06404

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3