A Machine Learning Enabled Image‐data‐driven End‐to‐end Mechanical Field Predictor For Dual‐Phase Steel

Author:

Lin Binbin1,Medghalchi Setareh2,Korte-Kerzel Sandra2,Xu Bai-Xiang1

Affiliation:

1. Mechanics of Functional Materials Division Institute of Materials Science Technische Universität Darmstadt Darmstadt Germany

2. Institute for Physical Metallurgy and Materials Physics RWTH Aachen University Aachen Germany

Abstract

AbstractThis contribution presents convolutional neural nets (CNN) based surrogate models for prediction of von Mises stress and equivalent plastic strain fields of commonly used Dual‐Phase (DP) steels in automotive applications. The models predict field quantities in an end‐to‐end manner, driven by segmented phase images from real experimental scanning electron micrographs as inputs and FEM calculations as outputs. Hereby, we train CNN models with the U‐net neural network structure based on around 900 elastoplastic FEM simulations of various DP steel microstructure samples under tensile test. The trained CNN models are validated and tested on 250 and 50 samples, respectively. Thereby CNN models are employed sequentially for different tasks , from the real micrographs to segmented phase maps, then from segmented phase maps to stress, strain field predictions, in an end‐to‐end manner. The field predictor model results show good agreement with the test data and convincing performance on unseen microstructural dataset. This work demonstrates the large potential of a Machine Learning model to make accumulatively use of the physics‐based simulation data of large number of boundary value problems with varying microstructure. It recaptures not only the physics, implied in each simulation training data obtained from the partial different governing equations of mechanics, but also the overarching correlation between the microstructure and the stress and strain field responses.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3