First steps towards modeling the interaction of cardiovascular agents and smooth muscle activation in arterial walls

Author:

Nurani Ramesh S.1,Uhlmann K.1,Saßmannshausen L.2,Rheinbach O.3,Klawonn A.2,Heinlein A.4,Balzani D.1

Affiliation:

1. Civil and Environmental Engineering Ruhr University Bochum Universitätsstraße 150 44801 Bochum

2. University of Cologne Department of Mathematics and Computer Science Cologne Germany

3. Technische Universität Bergakademie Freiberg Department of Mathematics and Informatics Freiberg Germany

4. Delft Institute of Applied Mathematics Delft University of Technology Mekelweg 4 2628 CD Delft The Netherlands

Abstract

AbstractNumerical simulation of the response of healthy and pathological arteries to cardiovascular agents can provide valuable information to the physician in the treatment of diseases such as hypertension, atherosclerosis, and the Marfan syndrome. Here, we provide a first step towards a computational framework to model the effects of antihypertensive agents on the mechanical response of arterial walls. A material model is developed by extending an existing formulation for wall tissue to incorporate the effects of calcium‐ion channel blockers. The resulting coupled deformation‐diffusion problem is then solved using the finite element method. Simulation results with drug activity show that, indeed, an increased lumen diameter due to reduced contraction is obtained. Additionally, a decrease in the rate of arterial contraction is observed, which is also consistent with expected behavior. Finally, we compare results for an implicit or explicit treatment of the the deformation‐diffusion coupling, and we observe that both coupling schemes yield comparable results for a wide range of time step sizes.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3