Identification of dynamic systems assisted by an autoregressive recurrent model

Author:

Bielitz Timo1ORCID,Bestle Dieter1

Affiliation:

1. Brandenburg University of Technology Cottbus‐Senftenberg Cottbus Germany

Abstract

AbstractThe identification of parameters in dynamic systems usually first requires modeling the system as nonlinear differential equations based on physical principles, which then can be evaluated to search for a set of optimal parameters that enable the mathematical model to reproduce some desired behavior of the real system. To overcome the necessity of complex modeling and to possibly reduce the number of extensive experimental evaluations of the real system or numerical evaluations of the differential equations, strategies from machine learning may be applied. The proposed method uses recurrent architectures such as Long Short‐Term Memory (LSTM) networks as core to predict the system development from initial conditions and parameter values. The trainable weights of the model are optimized based on a set of training data containing parameter values and corresponding solution trajectories generated by evaluation of the system to be investigated. The trained model may then be used to identify unknown system parameter values related to a specific solution trajectory by solving an optimization problem for the inputs of the machine learning model.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3