Nonisothermal Cahn–Hilliard Navier–Stokes system

Author:

Brunk Aaron1ORCID,Schumann Dennis1

Affiliation:

1. Institute of Mathematics Johannes Gutenberg University Mainz Mainz Germany

Abstract

AbstractIn this research, we introduce and investigate an approximation method that preserves the structural integrity of the non‐isothermal Cahn–Hilliard–Navier–Stokes system. Our approach extends a previously proposed technique by Brunk and Schumann, which utilizes conforming (inf‐sup stable) finite elements in space, coupled with implicit time discretization employing convex‐concave splitting. Expanding upon this method, we incorporate the unstable pair for the Navier–Stokes contributions, integrating Brezzi–Pitkäranta stabilization. Additionally, we improve the enforcement of incompressibility conditions through grad–div stabilization. While these techniques are well‐established for Navier–Stokes equations, it becomes apparent that for non‐isothermal models, they introduce additional coupling terms to the equation governing internal energy. To ensure the conservation of total energy and maintain entropy production, these stabilization terms are appropriately integrated into the internal energy equation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Reference14 articles.

1. Brunk A. &Schumann D.(2024).Structure‐preserving approximation for the non‐isothermal Cahn‐Hilliard‐Navier‐Stokes system. InProceedings ENUMATH 2023. Manuscript submitted for publication.https://arxiv.org/abs/2402.00147

2. Binary‐fluid–solid interaction based on the Navier–Stokes–Cahn–Hilliard equations;Brummelen E. H.;Journal of Fluids and Structures,2017

3. Non-isothermal Phase-Field Modeling of Heat–Melt–Microstructure-Coupled Processes During Powder Bed Fusion

4. Advected phase-field method for bounded solution of the Cahn–Hilliard Navier–Stokes equations

5. Alt H. W. &Pawlow I.(1990).Dynamics of non‐isothermal phase separation. InK.‐H.Hoffmann &J.Sprekels(Eds.) Free boundary value problems: Proceedings of a conference held at the Mathematisches Forschungsinstitut Oberwolfach July 9–15 1989(pp.1–26).Birkhäuser.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3