Transport map Bayesian parameter estimation for dynamical systems

Author:

Grashorn Jan1,Urrea-Quintero Jorge-Humberto2,Broggi Matteo1,Chamoin Ludovic3,Beer Michael145

Affiliation:

1. Institute for Risk and Reliability Leibniz University Hannover Hannover Germany

2. Institute for Mechanics and Computational Mechanics Leibniz University Hannover Hannover Germany

3. Université Paris-Saclay CentraleSupelec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay Gif-sur-Yvette France

4. Institute for Risk and Uncertainty University of Liverpool Liverpool United Kingdom

5. International Joint Research Center for Resilient Infrastructure & International Joint Research Center for Engineering Reliability and Stochastic Mechanics Tongji University Shanghai China

Abstract

AbstractAccurate online state and parameter estimation of uncertain non‐linear dynamical systems is a demanding task that has been traditionally handled by adopting non‐linear Kalman Filters or particle filters. However, in case of Kalman filters the system needs to be linearised and for particle filters the computational demand can be high. Recent advances in optimal transport theory and the application to Bayesian model updating pave the way for other approaches to system and parameter identification. They also provide a way of formulating the problem in such a way that efficient online estimation for complex systems is possible. In this work, we investigate the properties of the transport map approach when compared to standard Markov Chain Monte Carlo in an off‐line setting as a first step towards on‐line parameter estimation. We apply both approaches to an analytical exponential model and a dynamical system with seven unknown parameters subjected to ground displacement. Details on the theory of transport maps and on the used MCMC algorithm are also given.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3