Affiliation:
1. Centre for Mathematical Sciences Lund University Lund Sweden
Abstract
AbstractConservation and consistency are fundamental properties of discretizations of systems of hyperbolic conservation laws. Re‐ cently, these concepts have been extended to the realm of iterative methods by defining locally conservative and flux consistent iterations. In this note, the current status of such iterative methods is summarized. In particular, it has been shown that Krylov subspace methods are locally conservative, but that they are not flux consistent. Here, we approach the problem of quantifying the flux inconsistency of Krylov subspace methods. Krylov methods introduce a time retardation factor into discretizations of linear conservation laws. It has thusfar been unknown how to compute the precise value of this factor. This issue is resolved herein for Arnoldi‐based Krylov subspace methods.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献