Sparse identification of the dynamics of a nonlinear multistable oscillator

Author:

Kamecke Steffen1,Wulff Paul1ORCID,Gräbner Nils1,von Wagner Utz1

Affiliation:

1. Department of Applied Mechanics Technische Universität Berlin Chair of Mechatronics and Machine Dynamics (MMD) Berlin Germany

Abstract

AbstractRecently, data‐driven modeling approaches are getting increasingly examined regarding their applicability for nonlinear mechanical or mechatronic systems. With a high data availability and often insufficiently accurate descriptions of complex behavior of real systems using established physical models, statistical models provide promising alternatives. Alongside machine learning techniques like deep neural networks, sparse regression is increasingly used to obtain models from measurement data. With sparse regression, governing equations are estimated from a given function space so that the data are explained with as few terms as possible while maintaining a low model error. This method is implemented in a framework called sparse identification of nonlinear dynamics. This paper demonstrates the application of this method on free and forced vibrations of a two degree of freedom nonlinear rotary oscillator with two stable equilibrium positions. The setup and data acquisition as well as the application of sparse identification are described. The selected function space containing the candidate functions is essential for an accurate representation of the system at hand. Monomials form a commonly used function space because they can approximate a wide variety of nonlinear characteristics. However, in this work, it is shown that monomials alone are insufficient when dry friction appears. Therefore, to account for Coulomb friction, a sign‐function is added as a candidate to the function space of monomials up to the fifth order. Adaptions of the common optimization algorithms turned out to be necessary for the inclusion of Coulomb friction. As a result, it is found that the addition of the sign‐function for Coulomb friction increases the model quality significantly.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Reference10 articles.

1. Data-driven modeling and learning in science and engineering

2. Discovering governing equations from data by sparse identification of nonlinear dynamical systems

3. Kamecke S.(2022).Datenbasierte Modellierung eines harmonisch angeregten nichtlinearen Drehschwingers mit zwei Freiheitsgraden(Master thesis).TU Berlin.

4. Radmacher N.(2021).Auslegung und Konstruktion eines experimentellen Aufbaus eines nichtlinearen Schwingers(Master thesis).TU Berlin.

5. Korhammer J.(2022).Experimentelle Untersuchung eines nichtlinearen Drehschwingers und Modellierung durch Regressionsverfahren(Master thesis).TU Berlin.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimal model identification of drum brake squeal via SINDy;Archive of Applied Mechanics;2024-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3