Data Driven prediction of forced nonlinear vibrations using stabilised Autoregressive Neural Networks

Author:

Westmeier Tobias12,Kreuter Daniel1,Bäuerle Simon2,Hetzler Hartmut2

Affiliation:

1. Robert Bosch GmbH Corporate Research

2. University of Kassel Institute of Mechanics Engineering Dynamics Group

Abstract

AbstractIn this work, we propose a novel approach to the data‐driven prediction of vibration responses of nonlinear systems. The main idea is based on Autoregressive Neural Networks (ARNN) to model the nonlinear transfer behaviour between an external excitation and the system response. We propose an autoregressive network architecture with embedded symmetry using bias‐free tanh activation and guarantee Input‐to‐State‐Stability (ISS) by enforcing a special penalty term to the weights. The resulting training procedure is analysed for the example of a DUFFING oscillator with white noise excitation. In a BAYESian optimisation, it is found that beyond enforcing input‐to‐state‐stability, the stabilising penalty term also decreases sensitivity with respect to other training parameters compared to other classical techniques. Furthermore, we show that the stabilised ARNN is able to give excellent approximations of the nonlinear response of the DUFFING oscillator for a wide range of excitation intensities. In contrast, linear models, such as autoregressive models with exogenous input (ARX) in time domain or linear transfer functions in frequency domain, will only find some linear approximation. In particular, by construction, they will not be able to capture nonlinear effects for arbitrary amplitudes and excitation levels.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3