Latent heat effects in inductive heating of shape memory alloy fibers

Author:

Descher Stefan1ORCID,Krooß Philipp2,Ewald Felix2,Wolf Sebastian1,Kuhl Detlef1

Affiliation:

1. Institute of Structural Mechanics University of Kassel Kassel Germany

2. Institute of Materials Engineering, Metallic Materials University of Kassel Kassel Germany

Abstract

AbstractMotivation of the present work is an inductive heating process, used in manufacturing a new kind of improved ultra‐high performance concrete. In this novel material, fibers made out of shape memory alloys are used to increase the maximum possible fiber volume fraction, or to create an internal state of compressive stress. In contrast to other works, the underlying microstructure transformation from martensite to austenite is highlighted based on thermal analysis. Dynamic scanning calorimetry measurements are adapted as basis for development of a phenomenological phase transformation model. It relates local temperature and temperature rate to the rate of change of the phase indicator, modeling the transformation of martensite to austenite. Latent heat is considered by an enthalpy method, the inductive heating process is considered by a phenomenological model. Study results for a purely thermodynamic process of heating a single fiber embedded in concrete are presented. They show that latent heat effects delay phase transformation and the process of fiber activation is very sensitive to the induced heat. Furthermore, it is discovered that latent heat causes a strongly inhomogeneous state of transformation in radial direction of the fiber, which is of great importance for thermomechanical processes and the interpretation of experimental results.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3