A Reinforcement Learning Based Slope Limiter for Second‐Order Finite Volume Schemes

Author:

Schwarz Anna1,Keim Jens1,Chiocchetti Simone2,Beck Andrea1

Affiliation:

1. Institute of Aerodynamics and Gas Dynamics University of Stuttgart 70569 Stuttgart Germany

2. Laboratory of Applied Mathematics University of Trento Via Mesiano 77 38123 Trento Italy

Abstract

AbstractHyperbolic equations admit discontinuities in the solution and thus adequate and physically sound numerical schemes are necessary for their discretization. Second‐order finite volume schemes are a popular choice for the discretization of hyperbolic problems due to their simplicity. Despite the numerous advantages of higher‐order schemes in smooth regions, they fail at strong discontinuities. Crucial for the accurate and stable simulation of flow problems with discontinuities is the adequate and reliable limiting of the reconstructed slopes. Numerous limiters have been developed to handle this task. However, they are too dissipative in smooth regions or require empirical parameters which are globally defined and test case specific. Therefore, this paper aims to develop a new slope limiter based on deep learning and reinforcement learning techniques. For this, the proposed limiter is based on several admissibility constraints: positivity of the solution and a relaxed discrete maximum principle. This approach enables a slope limiter which is independent of a manually specified global parameter while providing an optimal slope with respect to the defined admissibility constraints. The new limiter is applied to several well‐known shock tube problems, which illustrates its broad applicability and the potential of reinforcement learning in numerics.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3