Model order reduction in subset simulations using the proper orthogonal decomposition

Author:

Thaler Denny1ORCID,Shields Michael D.2,Markert Bernd1,Bamer Franz1ORCID

Affiliation:

1. Institute of General Mechanics RWTH Aachen University Aachen Germany

2. Department of Civil and Systems Engineering Johns Hopkins University Baltimore Maryland USA

Abstract

AbstractThe crude Monte Carlo method is computationally expensive. Hence, incorporating model order reduction methods enabling reliability analysis for high‐dimensional problems is necessary. However, this strategy may result in an inaccurate estimation of the probability of failure for rare events for two reasons. First, the model order reduction, represented by the proper orthogonal decomposition (POD) here, requires response information in the form of snapshots a priori. To capture the essential nonlinear response behavior, we propose to update the proper orthogonal modes using extreme events. Second, the crude Monte Carlo simulation requires many samples to estimate low failure probabilities reliably. To this end, subset simulation found wide application in reliability analysis to reduce computational effort. Following this strategy, the proposed samples gradually move toward the failure region. Thus, incorporating updates of the modes is particularly promising in evaluating samples from the current subset region. This contribution shows the computational efficiency of POD within subset simulations. We then propose to leverage the estimation of the probability of failure by updating the modes within each subset.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3