Stochastic modeling of turbulent mixing based on a hierarchical swapping of fluid parcels

Author:

Starick Tommy1ORCID,Schmidt Heiko1

Affiliation:

1. BTU Cottbus‐Senftenberg Cottbus Germany

Abstract

AbstractTurbulent mixing is an omnipresent phenomenon that constantly affects our everyday life and plays an important role in a variety of industrial applications. The simulation of turbulent mixing poses great challenges, since the full resolution of all relevant length and time scales is associated with an immense computational effort. This limitation can be overcome by only resolving the large‐scale effects and completely model the sub‐grid scales. The development of an accurate sub‐grid mixing model is therefore a key challenge to capture all interactions in the sub‐grid scales. At this place, the hierarchical parcel‐swapping (HiPS) model formulated by A.R. Kerstein [J. Stat. Phys. 153, 142–161 (2013)] represents a computationally efficient and scale‐resolving turbulent mixing model. HiPS mimics the effects of turbulence on time‐evolving, diffusive scalar fields. In HiPS, the diffusive scalar fields or a state space is interpreted as a binary tree structure, which is an alternative approach compared to the most common mixing models. Every level of the tree represents a specific length and time scale, which is based on turbulence inertial range scaling. The state variables are only located at the base of the tree and are treated as fluid parcels. The effects of turbulent advection are represented by stochastic swaps of sub‐trees at rates determined by turbulent time scales associated with the sub‐trees. The mixing only takes places between adjacent fluid parcels and at rates consistent with the prevailing diffusion time scales. In this work, the HiPS model formulation for the simulation of passive scalar mixing is detailed first. Preliminary results for the mean square displacement, passive scalar probability density function (PDF) and scalar dissipation rate are given and reveal the strengths of the HiPS model considering the reduced order and computational efficiency. These model investigations are an important step of further HiPS advancements. The integrated auxiliary binary tree structure allows HiPS to satisfy a large number of criteria for a good mixing model. From this point of view, HiPS is an attractive candidate for modeling the mixing in transported PDF methods.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Reference22 articles.

1. PDF methods for turbulent reactive flows

2. Computational Models for Turbulent Reacting Flows

3. Villermaux J. &Devillon J. C.(1972).Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d'interaction phénoménologique.Chem. React. Eng. Proc. Int. Symp. 2nd2 1–13.

4. An approach to the autoignition of a turbulent mixture

5. A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3